USE MANUAL # TMR G3 | | - | | ъ. | |----|----|-----|----| | 1) | ГA | 1 - | ĸ | | for Maintenance date of commissioning: | |--| | position / system reference: | | service: | - 3 IDENTIFICATION CODE - 4 DISASSEMBLING SEQUENCE - 5 HYDRAULIC PARTS LEGEND - 6 'MOTOR PARTS LEGEND - 7 GENERAL NOTES - 8 OPERATING PRINCIPLE - 8 MOTOR - 9 DRY RUNNING SURVEY - 9 INSTRUCTIONS ON INSTALLATION AND USE - 9 INSTALLATION - 11 SHUTDOWN - 10 START-UP - 9 TRANSPORT - 11 USE - 11 MAINTENANCE - 11 DISMANTLING - 12 INSPECTION - 13 ASSEMBLY - 14 SAFETY RISKS - 15 IMPROPER USE - 15 INSTALLATION AND START-UP PERSONNEL - 15 MAINTENANCE AND OPERATIONAL PERSONNEL - 15 PERSONNEL RESPONSIBLE FOR REPAIRS - 15 WASTE DISPOSAL - 16 OPERATING FAULTS AND POSSIBLE CAUSES - 17 TECHNICAL DATA ### **IDENTIFICATION CODE** | | | | Pump data | | | Motor d | ata | |-------|---------|-------------------|-------------------------------|---|------------|-----------|-------------------------| | range | model | ex | ecution (materials) | internal structure | rpm | power | phase | | | □ 20.15 | □ WR (polipropile | ene PP) | □ R1 (C/Al ₂ O ₃) | □ 1450 | □ 0.18 kW | □ 1 (monofase) | | | □ 20.20 | □ GF (etilene-cl | oro trifluoro etilene E-CTFE) | □ X1 (SiC/Al ₂ O ₃) | □ 2900 | □ 0.25 kW | □ 3 (trifase) | | | □ 20.27 | □ GX (etilene-clo | ro trifluoro etilene E-CTFE) | □ N1 (CFF+PTFE/Al ₂ O ₃) | □ 1740 | □ 0.37 kW | | | | □ 20.36 | | | □ R2 (C/SiC) (£x) | □ 3480 | □ 0.55 kW | voltage/EEx | | | □ 30.15 | version | connections | □ X2 (SiC/SiC) | | □ 0.75 kW | □ 0 (senza motore) | | | □ 30.25 | □ N normale | □ B (BSP threaded) | □ N2 (CFF+PTFE/SiC) (Ex) | standard | □ 1.1 kW | □ N (tensione STD) | | TMR | □ 36.30 | □ P potenziata | □ N (NPT threaded) | | □ E (IEC) | □ 1.5 kW | □ S (tensione speciale) | | | □ 21.18 | □ S sovrapoten. | □ Z (ISO ANSI JIS flanged) | | □ N (NEMA) | □ 2.2 kW | □ E (EEX) | | | □ 21.25 | | | | | □ 3 kW | | | | □ 21.28 | O-ring | outside structure | | | □ 4 kW | | | | □ 21.43 | □ V (FPM) | □ Integral | | | □ 5.5 kW | | | | □ 31.22 | □ E (EPDM) | □ Armoured | | | □ 7.5 kW | | | | □ 31.30 | □ K (FFKM) | | | | □ 11 kW | | | | □ 31.40 | | | | | | | | Year of manufacture | Part number | |---------------------|-------------| |---------------------|-------------| Each pump is supplied with the serial and model abbreviation and the serial number on the rating plate, which is riveted onto the support side. Check these data upon receiving the goods. Any discrepancy between the order and the delivery must be communicated immediately. In order to be able to trace data and information, the abbreviation, model and serial number of the pump must be quoted in all correspondence. ### **DISASSEMBLING SEQUENCE** TOOLS Spanner No 13 ### **EXECUTION NOTES** - To facilitate the pump disassembling operations, first disassembly the HYDRAULIC PARTS from the MOTOR PARTS - unscrew the connections (POS.1) - warning! The disassembly operations of parts magnetically connected involve great opposed forces: keep the MO-TOR PARTS fixed on floor during the removing of the HYDRAULIC PARTS. ### **WARNING** The interventions must be performed under supervision of qualified personnel. - Before starting remember: - cut off the power supply from the motor and disconnect the electrical wiring; pull the wires out from the terminal box and isolate their extremities accordingly - close the suction and discharge valves; open the drain valve - use appropriate gloves, protective glosses and acid proof-clothing when disconnecting and washing the pump - disconnect hydraulic connections: leave enough time for the residual liquid to exit the pump casing and atmosferic air to fill the empty volume - · wash the pump before starting maintenace operations - · do not scatter the washing liquid in the environment - before attempting to dismantle the pump ensure that its motor is disconnected and that it may not be started accidentally - · before the inspection, check that you have spare O-rings ready to hand for re-installing at the end of operations - warning! Operations near the magnets attract the tools. Proceed with caution to avoid damages. For further details see paragraph "Disassembling" | note | re ref pos. | pos. | Part name | Q.ty | | Dis | ass | emb | oling | ste | ps s | eque | ence | ; | Spare s
working | | |------|-------------|----------------|-----------------------------------|------|---|-----|-----|-----|-------|-----|------|------|------|----------|--------------------|---| | | | pos. 1 art 1 | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 2 | 5 | | | 1 | 910.1 | Connection volute casing/strainer | 4 | • | ### HYDRAULIC PARTS LEGEND **TOOLS** Spanner No 13 ### **EXECUTION NOTES** - disassembly keeping the pump in vertical position (suction on top) unscrew the connections (POS.2) | | | | 2 | | | | | | | | | | | | OLIO I AIX | | |------|-----|-------|--------------------------------------|------|---|-----|------|-----------------------|-------|-----|-------|------|------|----|------------|---------------------| | note | ref | pos. | Part name | Q.ty | | Dis | sass | emb | oling | ste | os se | eque | ence |) | | tock for
g years | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 2 | 5 | | | 2 | 910.2 | Connection volute casing/rear casing | 8 | | • | | | | | | | | | | | | | 3 | 102 | VOLUTE CASING | 1 | | | • | | | | | | | | | 1 | | | 4 | 331 | FRONT THRUST BEARING | 1 | | | | $ \cdot $ | | | | | | | 1 | 2 | | | 5 | 233 | IMPELLER | 1 | | | | | • | | | | | | 1 | 1 | | | 6 | 134 | CENTER SEMI-DISC | 2 | | | | | • | | | | | | | | | | 7 | 545 | GUIDE BUSHING | 1 | | | | | | • | | | | | 1 | 2 | | | 8 | 412 | OR VOLUTE CASING | 1 | | | | | | | • | | | | 1 | 2 | | | 9 | 162 | REAR CASING | 1 | | | | | | | | • | | | | 1 | | | 22 | 910.3 | Connection impeller / magnetic core | 4 | | | | $\lceil \cdot \rceil$ | | | | | | | 4 | 4 | | | 23 | 857 | MAGNETIC CORE | 1 | | | | | • | | | | | | | | | | 24 | 910.4 | Connection shaft / rear casing | 2 | | | | | | | • | | | | 2 | 2 | | | 25 | 210 | SHAFT | 1 | | | | | | | | • | | | 1 | 1 | | | 26 | 197 | PLATE REAR CASING | 1 | | | | | | | | • | | | | | | | 27 | 910.5 | Connection rear casing / plate | 8 | | | | | | | • | | | | | | | | 28 | 932.1 | BACK SEEGER (OUTLET) | 1 | | • | | | | | | | | | | 1 | | | 29 | 932.2 | FRONT SEEGER (OUTLET) | 1 | • | | | | | | | | | | | 1 | | | 30 | 932.3 | BACK SEEGER (INLET) | 1 | | • | | | | | | | | | | 1 | | | 31 | 932.4 | FRONT SEEGER (INLET) | 1 | • | | | | | | | | | | | 1 | | | 38 | 912 | DRAIN PLUG (optional) | 1 | • | | | | | | | | | | | | | | 39 | 195.1 | THREADED ARMOUR | 1 | | | • | | | | | | | | | | | | 40 | 922 | LOCK NUT | 1 | | • | | | | | | | | | | | | | 41 | 195.2 | FLANGED ARMOUR | 1 | | | • | | | | | | | | | | | | 44 | 412.1 | OR DRAIN PLUG (optional) | 1 | | ٠ | | | | | | | | | 1 | 1 | ### 'MOTOR PARTS LEGEND # Sorew driver Type Phillipsq punch f < 4 mm NOTE OPERATIVE Unscrew the connections (POS.10) Remove the collar from the drive magnet assembly using the punch Fig. 2.2 A – disassembling sequence MOTOR PARTS | note | ref | pos. | Part name | Q.ty | | Dis | sass | emb | oling | ste | ps se | eque | ence |) | Spare s
working | tock for
g years | |------|-----|--------|---|------|---|-----|------|-----|-------|-----|-------|------|------|----|--------------------|---------------------| | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 2 | 5 | | | 10 | 910.6 | Connection drive magnet assembly / electric motor | 4 | | | • | | | | | | | | | | | | 11 | 855 | DRIVE MAGNET ASSEMBLY | 1 | | | | • | | | | | | | | | | | 12 | 518.1 | FRONT COLLAR (drive magnet assembly) | 1 | | | | | • | | | | | | | 1 | | | 13 | 523 | SOCKET | 2 | | | | | • | | | | | | | 2 | | | 14 | 910.7 | Connection bracket / electric motor | 4 | | | | | | • | | | | | | | | | 15 | 807 | BRACKET | 1 | | | | | | | • | | | | | | | | 16 | 910.8 | Connection electric motor / base | 4 | | | | | | | | • | | | | | | | 17 | 800 | ELECTRIC MOTOR | 1 | | | | | | | | | • | | | | | | 18 | 890 | BASE (optional) | 1 | | | | | | | | | | • | | | | | 19 | 518.2 | BACK COLLAR (drive magnet assembly) | 1 | | | | | • | | | | | | | 1 | | | 20 | 910.9 | Connection bracket / motor flange | 4 | | | | | | | • | | | | | | | | 21 | 334 | MOTOR FLANGE | 1 | | | | | | | | • | | | | | | | 43 | 185 | PACKING RING (optional) | 4 | | | | | | | | | | • | | | | | 49 | 934 | SAFETY WASHER | 1 | • | | | | | | | | | | | | | | 50 | 910.10 | Connection safety screw / motor shaft | 1 | | • | ### **GENERAL NOTES** "TRM" pumps are designed and built for the transfer of liquid chemical products having a specific weight, viscosity, temperature and stability of state appropriate for use with centrifugal pumps in a fixed installation, from a tank at a lower level to a tank or a pipe to a higher level. The characteristics of the liquid (pressure, temperature, chemical reactivity, specific weight, viscosity, vapour tension) and the ambient atmosphere must be compatible with the characteristics of the pump and are defined upon ordering. The pump's performance (capacity, head, rpm) is defined upon ordering and specified on the identification plate. "TMR" and pumps are centrifugal, horizontal, single stage, coupled to a non-synchronous electric motor via a magnetic coupling, with axial inlet and radial outlet for connection to the hydraulic system. They are foot-mounted for floor fixing. "TMR" pumps are not self priming. R1-R2 execution "TMR" pumps can run dry. The liquid to be pumped must be clean for the R1-R2-N1-N2
execution, the X1-2 execution may contain solid (%, dimension and solid part hardness must be agreed during the offer). Clockwise rotation seen from the motor side. Make sure that the chemical and physical characteristics of the liquid have been carefully evaluated for pump suitability. Verify the compatibility with the phisical-chemical characteristics of the liquid. The specific weight that can be pumped at 25 °C (liquid and environment) referred to max flow (50 e 60 Hz) depend upon the type of construction: | standard contruction N (stamped on the rating plate) | 1,05 | kg/dm3 | |---|------|--------| | powered construction P (stamped on the rating plate) | 1,35 | kg/dm3 | | strong-powered construction S (stamped on the rating plate) | 1,80 | kg/dm3 | The specific weight that can be pumped at 70°C is 10% less than that at 25°C. The level of cinematic viscosity must not exceed 30 cSt so as not to significantly modify the pump's performance. Higher values up to a maximum of 100 cSt are possible provided that the pump is equipped with suitable impeller to be defined upon ordering. The maximum continuous working temperature referred to water depends on the choice of materials (specified on the identification plate): ``` 80 °C (176 °F) execution WR 110 °C (230 °F) execution GF ``` The ambient temperature interval is related to the choice of materials (specified on the identification plate): ``` 0 - +40°C (14,104 °F) execution WR -20 - +40°C (-4,104 °F) execution GF ``` The maximum pressure the pump may be subjected to is 1.5 times the head value developed with the outlet closed. The vapour pressure value of the liquid to be pumped must exceed (by at least 1m w.c) to the difference between the absolute total head (suction side pressure added to the positive suction head, or subtracted by the suction lift) and the pressure drops in the suction side piping (including the inlet NPSHr drops shown on the specific tables). The pump does not include any non return valve nor any liquid flow control or motor stop device. ### **OPERATING PRINCIPLE** HYDRAULICALLY alike to all centrifugal pumps, it is equipped with a blade-type impeller rotating within a fixed housing. It has a tangential outlet (or radial with an internal deflector) and, by creating a depression in the center, it allows the liquid to flow from the central suction side. Then, flowing through the impeller's blades, the fluid acquires energy and is conveyed towards the outlet. MECHANICALLY different from the traditional centrifugal pumps in the impeller motion drive thanks to the magnetic field created between the primary outer magnet and the inner magnet (not visible because housed inside the impeller hub). The magnetic field crosses the plastic parts and the liquid, and firmly couples the two magnet assemblies. When the motor causes the outer magnet to rotate together with its housing, the inner magnet assembly is dragged at the same speed. As a result the impeller, which is integral to it, is maintained in rotation. The SHAFT, totally within the housing, is not involved in the transmission of rotary motion; its only function is to act as a centering guide and support for the impeller. To this end the components are designed so that a spontaneous cooling circuit (due to a simple effect of pressure) is established to cool the surfaces subject to friction. Periodic inspections prevent the build-up of sediments between the shafts and the guide bushes significantly lengthening their working life. ### **MOTOR** ### Electrical connections The electrical connection to the motor terminal determines the direction of rotation of the motor and can be verified by looking at the cooling fan at the rear of the motor (for the Argal pump this has to rotate clockwise looking at the front end). With single phase motors the direction of rotation may be reversed by changing the position of the connection plates(fig.1) With three-phase motors the direction of rotation may be changed by swapping any two of the three conductors independently of the type of connection to the windings(fig.2) The windings of three-phase motors (e.g. with (a) 230-400 V; (b) 400-600 V) require a delta-connection for lower voltage (230 volts for a; 400 volts for b)(fig.3) They require a star-connection for higher voltage (400 volts for a; 690 volts for b)(fig.4) Star/Delta starting is used when the motor power is above 7.5 kW (10 HP) only in case of frequent starts and short running times, but always when the motor power is above 15kW (20 HP). All this is also to safeguard the structure of the pump. Protection level The initials IP are followed by two numbers: The first number indicates the level of protection against penetration of solid objects and in particular: - 4 for solids whose dimension is greater than 1mm - 5 for dust (eventual internal deposits will not harm operation) - 6 for dust (no pentetration) The second number indicates the protection against the penetration of liquids. In particular: - 4 for water sprays from all directions - 5 for jets of water from all directions - 6 for tidal and sea waves. According to the IP protection indicated on the identification plate of the motor and to the environmental conditions, arrange for opportune extra protections allowing in any case correct ventilation and rapid drainage of rainwater. ### **DRY RUNNING SURVEY** Though the pump can run dry (execution R1-R2), it is therefore suitable to safeguard the pump and the plant to use: - pressure switch; - fluxmeter: - control devices for the motor power absorbtion. ### INSTRUCTIONS ON INSTALLATION AND USE ### **TRANSPORT** - cover the hydraulic connections - when lifting the unit do not exert force on the plastic fittings - lay the pump on its base or fixing plate during transport - if the road is particularly rough, protect the pump by means of adequate shock absorbing supports - bumps and shocks may damage important working parts vital for safety and functionality of the machine ### **INSTALLATION** clean the plant before connecting the pump make sure that no foreign bodies are left in the pump. Remove safety caps on the hydraulic connections. follow the instructions indicated in the following diagram: - 1) Suction head varies according to flow in order to prevent windage (min. 0.5 m, max. 15% of pump head) - 2) YES: expansion joint (indispensable with long pipes or hot liquids) and/or anti-vibration facility during discharge and suction; anchored near to pump - 3) YES: attachment for gauge or safety pressure switch - 4) YES: check value (especially for long vertical or horizontal pipes; compulsory with parallel pumps). - 5) YES: adjusting gate valve on outlet - 6) speed of delivered fluid: 3.,5 m/s max. . - 7) NO: elbow joints (and other parts) on the pump (discharge and suction lines) - 8) YES: drainage channel around base - 9) Fix the pump by the fixing holes provided: the supports must be level - 10) YES: pipe discharge (completely sealed), discharge value shut during normal operations - 11) YES: pipe fixing parts - 12) YES: discharge collection well (does not leak) - 13) Fluid speed suction: 2.5 m/s - 14) NO: air pockets: the circuit must be short and straight - 15) With positive head: tilt of piping towards pump - 16) With negative suction lift: tilt of piping towards suction tank - 17) YES: check vale (with negative suction lift) - 18) YES: gate valve (may also be near pump in the case of long piping) - 19) YES: strainer (3-5 mm mesh) - 20) YES: strainer (3-5 mm mesh) - 21) Suction head, 3 m max. - 22) Immersion depth: 0.3 m min. - 23) YES: overcoming obstacles at lower depths. - anchor the pump to an adequate base plate having a mass at least 5 times that of the pump - do not use anti-vibration mounts to fix the pump - anti-vibration joints are recommended on the pipe connections - manually verify that all rotating parts are free to turn without abnormal friction by turning the motor cooling fan - make sure that the power supply is compatible with the data shown on the pump motor identification plate - connect the motor to the power supply via a magnetic/thermal control switch - ensure that star-delta starting is implemented for motors whose power is more than 15kW - install emergency stop devices to switch off the pump in case of low liquid level (floating, magnetic, electronic, pressure-sensitive) - ambient temperature as a function of the physical-chemical characteristics of the liquid to be pumped and in any case not greater or lower than the interval indicated in the GENERAL HINTS - other environmental conditions in accordance with the IP protection of the motor - install a drainage pit to collect any liquid overflow from the base drainage channel due to normal maintenance work - leave enough free space around the pump for a person to move - leave free space above the pump for lifting operations - highlight the presence of aggressive liquids with coloured tags following the local safety regulations - do not install the pump (made in thermoplastic material) in close proximity to heating apparatus - do not install the pump in areas subject to solid or liquid matter falling - do not install the pump in an explosive atmosphere unless the motor and its coupling have been adequately prearranged - do not install the pump in close proximity to workplaces or crowded areas - install extra protection guards for the pump or persons as the need arises - install a spare equivalent pump in parallel ### START-UP - verify that the instructions outlined in the INSTALLATION have been followed - · verify that fixing elements(screws and bolts) are closed - · verify the correct direction of rotation (clockwise from the motor side) supplying the motor with short impulses - ensure that the NPSH available is greater than that required by the pump (in particular for hot liquids, liquids with high vapour pressure, very long suction pipes or negative suction
lift) - close the drain valve (pos. 19); totally flood the suction pipe and the pump - start the pump with the suction valve completely open and the discharge valve partially closed - slowly regulate the flow by opening or closing the discharge valve (never the suction valve). Make sure that the power absorbed by the motor does not exceed the rated one indicated on the motor identification plate - do not operate the pump at the limit values of its performance curve: maximum head (discharge valve excessively closed) or maximum capacity (total absence of drops and geodetic head on the discharge side) - set the operating point to that for which the pump was requested - ensure that there are no abnormal vibrations or noise due to inadequate mounting or cavitation - avoid short and/or frequent starts by properly setting the control devices Motor power kW; 0,75÷5,5 7,5÷30 37÷110 132÷200 250÷315 Max. no. starts/hour 2 - 4 poli; 20 - 40 10 - 20 6 - 12 2 - 4 1 - 2 - ensure that the temperature, pressure and liquid characteristics are as those specified at the time of order. - Warning!!! At the start-up be sure that all the internal hydraulic parts are not in CCW rotation (the cooling fan of the motor must stand or CW rotate), to prevent decoupling among magnetic driven parts of the pump;if the CCW rotation is due to the feed-back of the liquid in the discharge side, add a no-return valve in the plant. ### USE - · switch automatic control on - do not activate valves whilst the pump is in operation - risks of dangerous water hammer effects in case of sudden or improper valve actuation (only trained personnel should operate valves) - completely empty and wash the pump before using a different liquid - isolate or empty the pump if the crystallization temperature of the liquid is the same or lower than the ambient temperature - stop the pump if the liquid temperature exceeds the maximum allowed temperature indicated in the general notes; if the increase is of approximately 20%, check internal parts - · close the valves in case of leaks - wash with water only if compatible from the chemical point of view. As alternative use an appropriate solvent that will not generate dangerous exothermal reactions - · contact the liquid supplier for information on the appropriate fire precautions - empty the pump in case of long periods of inactivity (in particular with liquids which would easily crystallize) ### SHUTDOWN - · disconnect the motor - before starting maintenance, turn off the suction and discharge valves ### **MAINTENANCE** - all these maintenance operations must be performed under the supervision of qualified personnel - make periodic inspections (2 to 6 months depending on the type of liquid and the operating conditions) on the rotating parts of the pump; clean or replace as necessary - make periodic inspections (3 to 5 months depending on the type of liquid and the operating conditions) on the functionality of the motor control system; efficiency must be guaranteed - make periodic inspections (2 to 30 days depending on the type of liquid and the operating conditions) of the in-line and foot filters as well as of the bottom valve - the presence of liquid below the pump could be a clue to pump problems - excessive current consumption could be an indication of impeller problems - unusual vibrations could be due to unbalanced impeller (due to damage or presence of foreign material obstructing its blades) - reduced pump performance could be due to an obstruction of the impeller or damages to the motor - motor damages could be due to abnormal friction within the pump - · damaged parts must be replaced with new original parts - the replacement of damaged parts must be carried out in a clean dry area ### **DISMANTLING** - Tools required: size 13 –17-19 socket spanner, screw driver, punch ? < 4mm - Bolts have right-hand thread - all these maintenance operations must be performed under supervision of qualified personnel - cut off the power supply from the motor and disconnect the electrical wiring; pull the wires out from the terminal box and isolate their extremities accordingly - close the suction and discharge valves and open the drain valve - use gloves, safety glasses and acid-proof overalls when disconnecting and washing the pump - disconnect the piping and leave enough time for the residual liquid to exit the pump body and atmospheric air to fill the empty volume - wash the pump before carrying out any maintenance work - do not scatter the liquid in the environment - before attempting to dismantle the pump ensure that its motor is disconnected and that it may not be started accidentally - before the inspection, check that you have spare O-rings ready to hand for re-installing at the end of operations - · warning: operations near the magnet attract the tools. Proceed with cau- tion to avoid damage. - As described on paragraph no. 2 "Disassembling sequence", unscrew the connections (POS.1) and remove the HYDRAULIC PARTS from the MOTOR - Proceed separately to disassembly the HYDRAULIC PARTS or the MOTOR PARTS following the sequence described on paragraph no. 2 " Disassembling 22 sequence ". - warning! The disassembly operations of parts magnetically connected involve great opposed forces: keep the MOTOR PARTS fixed on floor during the removing of the HYDRAULIC PARTS - to facilitate the disassembly operations keep the pump in vertical position (suction on top) Fig. 9.1 A - warning! During the disassembly of the hydraulic parts do not bump the guide components - warning! After the dismantling of the pump casing extract together the impeller and the central disc; extract avoiding radial movements Fig. 9.1 B - warning! Before separating the impeller assembly (Fig. 9.1 C POS. 5) from magnetic core (Fig. 9.1 C - POS. 23), unsrew the 4 plastic lock srews (Fig. 9.1 C - POS.22) - Armour Dismantling: - warning! The volute casing must be already separated from other HYDRAU-LIC - for the flanged execution, first disassemble the inlet and outlet seeger (Fig.9.1 D – POS. 29, 30), second rotate the flanged armour with the purpose to disgage the inlet end outlet as described in the (Fig. 9.1 D) - for the threaded execution unsrew the lock nut and disgage the armour (FIG.9.1 E - POS.40) - disassembly the MOTOR PARTS: unscrew the 4 screws inside the drive magnet assembly, POS. 10 in Fig. 9.1 F - warning! During the use of screw driver inside the drive magnet assembly you 40 must oppose the magnetic attraction - warning! After unscrewing the 4 screw ((POS. 10 in Fig. 9.1 F)) insert the punch Ø < 4mm in one of two extraction holes to remove the collar (POS.19 in Fig. 9.1 G) from the back and to allow the removing of the drive magnet assembly, sockets and collar (Fig. 9.1 H) from the motor shaft. Fig. 9.1 F Fig. 9.1 G Fig. 9.1 H ### INSPECTION ### Check: - the pump shaft for cracks and excessive wear - quide bushing for excessive wear(@ 5 %) - counterthrust bushing for cracks or excessive wear - pump shaft clutch - that the guide bushing cooling circuit is not blocked - the impeller, volute and rear chamber for abrasion and corrosion - that the pressure balancing holes on the impeller blades are not blocked - for lumps and clusters created by the pumped liquid (especially at the bottom the rear chamber) - for infiltration of liquid into the chamber containing the inner magnets - abrasions on the outside surface of the reinforcement chamber due to scratching of the outer magnets Replace broken, cracked or deformed parts. Reopen all the blocked pipes and eliminate any chemical agglomeration. Clean all the surfaces before re-assembly, especially the O-ring seats (risk of drip leaks). ### **ASSEMBLY** Tools required: size 10-13 socket spanner, screw driver (Phillips drive type) Bolts have right-hand thread Bolt torque setting: M4 M6 M8 M10 M12 (reduce by 25% on plastic parts) Nm 4 14 24 25 - all these maintenance operations must be performed under supervision of qualified - before the inspection, check that you have spare o-ring ready to hand for re-installing at the end of operations - Proceed separately to disassembly the HYDRAULIC PARTS or the MOTOR PARTS following the backward sequence described on paragraph no. 2 " Disassembling sequence ". - warning! Assembly the hydraulic parts to the motor parts only after the complete assembling of these two sub-assembly groups - assembling the hydraulics and the motor parts, oppose the magnetical force keeping the hydraulic parts by the inlet and the outlet connectors - insert the correct sockets couple (see APPENDIX-A), take care that the groove placed between the socket keys is fitted in the drive magnet assembly, this placement grantee the correct assembling and the unfitting of the sockets. (Fig. 9.3 A) - the correct placement of the drive magnet assembly is explained in APPENDIX – - insert the collars in the drive magnet assembly tang, see the explanation in Fig. 9.3 B for the correct placement - Warning! Don't reverse the collars; in the collar POS.19 are visible the brass nuts - insert the 4 screws in the sites - warning! Don't crew completely the 4 before fitting the drive magnet assembly on motor - insert the assembly group (drive magnet assembly, sockets, collars) on motor shaft - Check that during fitting of the assembly group the position between the sockets and the drive magnet assembly is unchanged (see APPENDIX -A), screw the 4 screws repeating the sequence E1, E2, E3, E4 (Fig. 9.3 C) applying a torque ? 6 - fit the bushing POS.7 (cfr. 2.1 pag. 3) in the impeller as explained in Fig. 9.3 D - before the fitting take care to align the bushing radial grooves with the key placed in the impeller - warning! During the bushing fitting the ambient temperature must be up to 20°C, otherwise eat the impeller at about 40 °C - during the fitting operation don't hit the bushing - fit the impeller assembly in the magnetical core - before fitting align the 4 radial grooves placed on the impeller POS. 5
with the 4 keys placed in the internal diameter of the magnetical core - after checking that the fitting is well done, insert the 4 plastic screws POS. 22 - assemble the impeller with the semi-disks pos.6 as explained in Fig. 9.3 F - insert the group (impeller + semi-disks) in the rear casing, during this operation take care of the guide system components, these components are made of materials witch fear hits. - Insert the o-ring in the site and fit the 8 screws POS. 2 (cfr. 2.1 pag. 3) - Assemble the motor parts with the hydraulic parts, assembling the hydraulics and the motor parts, oppose the magnetical force keeping the hydraulic parts by the inlet and the outlet connectors Fig. 9.3 C Fig. 9.3 D Fig. 9.3 E Fig. 9.3 F ### **SAFETY RISKS** _ WARNING! MAGNETIC FIELDS. Magnetic pumps contain some of the most powerful magnets in existence. The magnets are positioned on the back of the impeller and the outer magnet housing. The magnetic fields may adversely affect persons fitted with electronic devices (e.g. pacemakers and defibrillators): such persons must not be allowed to handle magnetic pumps and magnetic pump components. WARNING! MAGNETIC FORCE. Exercise extreme caution and follow instructions carefully during pump assembly/dismantling. Magnetic force attract (cause insertion of) internal and magnetic units, and are therefore a potential source of injury to fingers and hands. WARNING! CHEMICAL HAZARD. The pumps are designed to pump different types of liquid and chemical. Follow the specific instructions to decontaminate during inspection or maintenance. § WARNING! Safety risks for personnel mainly arise from improper use or accidental damages. These risks may be of an electrical nature as far as the non-synchronous motor is concerned and may cause injury to hands if working on an open pump. Risks may also arise due to the nature of the liquids pumped. It is therefore of utmost importance to closely follow all the instructions contained in this manual so as to eliminate the causes that may lead to pump failure and the consequent leakage of liquid dangerous for both personnel and the environment. Risks may also arise from improper maintenance or dismantling practices. In any case five general rules are important: A - all services must be carried out by specialised personnel or supervised by qualified personnel depending on the type of maintenance required - B install protection guards against eventual liquid sprays (when the pump is not installed in remote areas) due to an accidental pipe rupture. Arrange for safety basins to collect possible leakage - C when working on the pump always wear acid-proof protective clothing - D arrange for proper conditions for suction and discharge valve closing during disassembly - E make sure that the motor is completely disconnected during disassembly. Proper design and building of the plants, with well positioned and well marked piping fitted with shut-off valves, adequate passages and work areas for maintenance and inspections are extremely important (since the pressure developed by the pump could give some kind of damage to the plant in case this one should be faulty made or wear and tear-damaged). It must be stressed that the major cause of pump failures leading to a consequent need to intervene is due to the pump running dry in manually operated plants. This is generally due to: - the suction valve being open at start-up or - the suction tank being emptied without stopping ### INSTALLATION AND START-UP PERSONNEL Interventions allowed only to specialised personnel who may eventually delegate to others some operations depending on specific evaluations (technical capability required: specialisation in industrial plumbing or electric systems as needed). ### MAINTENANCE AND OPERATIONAL PERSONNEL Interventions allowed to general operators (after training on the correct use of the plant): - pump starting and stopping - · opening and closing of valves with the pump at rest - · emptying and washing of the pump body via special valves and piping - cleaning of filtering elements Interventions allowed to qualified personnel (technical capacities required: general knowledge of the mechanical, electrical and chemical features of the plant being fed by the pump and of the pump itself): - verification of environmental conditions - verification of the condition of the liquid being pumped - inspections of the control/stop devices of the pump - · inspections of the rotating parts of the pump - trouble shooting ### PERSONNEL RESPONSIBLE FOR REPAIRS Interventions allowed to general operators under the supervision of qualified personnel: - stopping of the pump - closing of the valve - · emptying of pump body - · disconnection of piping from fittings - removal of anchoring bolts - · washing with water or suitable solvent as needed - transport (after removal of electrical connections by qualified personnel) Interventions by qualified personnel (technical capacities required: general knowledge of machining operations, awareness of possible damage to parts due to abrasion or shocks during handling, know-how of required bolt and screw tightening required on different materials such as plastics and metals, use of precision measuring instruments): - opening and closing of the pump body - · removal and replacement of rotating parts ### WASTE DISPOSAL Materials: separate plastic from metal parts. Dispose of by authorized companies. ### **IMPROPER USE** The pump must not be used for purposes other than the transfer of liquids. The pump cannot be used to generate isostatic or counter pressures. The pump cannot be used to mix liquids generating an exothermal reaction The pump must be installed horizontally on a firm base. The pump must be installed on a suitable hydraulic plant with inlet and outlet connections to proper suction and discharge pipes. The plant must be able to shut off the liquid flow independently from the pump. Handling of aggressive liquids requires specific technical knowledge ### OPERATING FAULTS AND POSSIBLE CAUSES ### Pump does not deliver: - 1.rotates in wrong direction - 2.suction pipe is excessively long and tortuous - 3.insufficient geodetic pump head or excessive suction geodetic lift - 4.air infiltration into the suction pipe or branches - 5.pump or suction pipe not completely covered by liquid - 6.impeller channels blocked by impurities - 7.check valve on discharge pipe jammed - 8.geodetic system height is greater than maximum potential pump head - 9.impeller jammed by considerable layer of crystals or by melting of materials for dry rotation. - 10.bottom valve blocked by mud or other debris - 11.bottom valve insufficiently immersed - 12.bottom valve faulty, thereby causing suction valve to empty when pump stops - 13.magnets release a much greater specific weight and flow rate of liquid than planned - 14.the magnets release due start-up made while impeller is CCW moving (feed-back of the liquid in the discharge side) Pump discharge rate or pressure insufficient: see 01, 02, 03, 04, 05, 06, 10, 11, 12, 13 - 15.system's resisting head is greater than expected - 16.suction pipe, closing valve and other items have an insufficient nominal diameter - 17.small geometric pump suction head - 18.damaged or worn impeller - 19.liquid viscosity greater than expected - 20.excessive quantities of air or gas in liquid - 21.elbow joints, check valves or other items on the outlet port - 22.liquid (especially if hot) with tendency to change into gaseous state Pump absorbs too much power: ### see 19 - 23.pump operates at greater capacity than expected - 24.specific weight of liquid is greater than expected - 25.impurities inside pump create abnormal wear - 26.electric motor supply voltage is not rated voltage Pump vibrates and is noisy: ### see 25 - 27.operates at full capacity (no head) - 28.pump or pipes inadequately fixed - 29.eccentric impeller operation because of worn bushes Pump's internal parts wear out too quickly: ### see 25 - 30.liquid excessively abrasive - 31.recurring cavitation problems (see. 02, 15, 19, 17) - 32.high tendency of liquid to crystallise or polymerise when pump is not operating. - 33.pump made of materials that are unsuitable for pumped liquid - 34.operation with capacity too reduced | N | mode | el | IEC
frame | DnA | DnM | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | d x z
iso / ansi / jis | a1 | L(1) | Q | h1 | h2 | r | r1 | rb | m1 | n1 | s1 | g(1) | L3 | B2 | S2 | L1 | В3 | h3 |
--|---|---|--|------|--------|-----|-----|------------------------|------------------------|---------------------------|----|--|----|---|-----|---|---|---|--|---|--|---|--|---|----|--|---|----| | S 112M N 100L N 100L N 112M S 132Sh 132S | | N | 90L | | | | | | | | | 469 | | 90 | | 244 | 188 | 200 | 125 | 140 | 8 | 142 | 185 | 248 | | 245 | 308 | | | N 100L 100 | 20.15 | Р | 100L | | | | | | | | | 512 | | 100 | | 261 | | 210 | | 160 | | 155 | | | | | | | | N 10L | | S | 112M | | | | | | | | | 521 | | 112 | | 268 | 100 | 217 | | 190 | | 168 | 205 | 305 | | 265 | 365 | | | S 13284 13284 20 27 P 13284 20 28 28 28 28 28 28 28 | | N | 100L | | | | | | | | | 512 | | 100 | | 261 | 190 | 210 | | 160 | | 155 | 205 | 303 | | 200 | 303 | | | N 112M 12M 20.36 P 3358A N 1328A S | 20.20 | Р | 112M | | | | | | | | | 521 | | 112 | | 268 | | 217 | | 190 | | 168 | | | | | | | | N 112M 120 130 130 130 140 | | S | | | | | | | | | | | | _ | | 307 | | | 140 | 216 | 10 | 181 | 263 | 359 | | 333 | 429 | | | S 13280 N | | N | 112M | | | | | | | 4 | | 521 | | 112 | | 268 | 198 | 217 | | 190 | | 168 | 205 | 305 | | 265 | 365 | | | A | 20.27 | | 132SA | | | | | | | × 6 | A | | | | | | | | 120 | 02 | , | | 578 | | 132 | | 307 | 218 | 235 | | 216 | | 181 | 263 | 359 | | 333 | 429 | | | 30.15 P 1325A S 1325B S 130MA N 1324 S 1325B S 100MA N | | | | 5, | 1/2 | | 2 | 1, | 2/1 | × | 30.15 P 1325A S 1325B S 130MA 30.30 P 160MA 30.40 P 1325B S 1325B 30.50 P 1325B S 100MA | 20.36 | | | - 02 | 0-1 | 2 | - | 12 | 86 / | 1 | 70 | | 96 | | 160 | | | | | | | | | | 14 | | | 55 | | 30.15 P 1325A S 1325B S 130MA N 1324 S 1325B S 100MA N | | | | 4, | 4 | | | 25 / | 110 | 16 | | | | | | | | | 210 | | 14 | | | _ | | | | | | Solution | 00.45 | | | | | | | _ | , | 4 | | 521 | | 112 | | 268 | 198 | 217 | | 190 | | 168 | 205 | 305 | | 265 | 365 | | | N 132SA P 132SB 36.30 P 160MA S 132SB 216 S 160 | 30.15 | | | | | | | | | 8 | | | | | | | | | | | 40 | | | | | | | | | N 100L N 112M S 132SB 13 | | | | | | | | | | | | 578 | | 132 | | 307 | 218 | 235 | 140 | 216 | 10 | 181 | 263 | 359 | | 333 | 429 | | | S 160MA N 1328B S 160MA N 1328B S 160MA S 1328B S 160MA S 160MA S | 20.25 | N 1328B 36.30 P 160MA 1328B 36.30 P 160MA 1328B 21.43 P 1328B S 160MA P 1328B 31.30 P 160MA S N S | 30.25 | \vdash | | | | | | | | | | | | 160 | | 156 | 249 | 266 | 210 | 254 | 1/ | 215 | 335 | 405 | - | 405 | 175 | | | Model | | | | | | | | | | | | 578 | | _ | | | | _ | | | | | | | - | | | | | March Marc | 36.30 | | | | | | | | | | | 370 | | 102 | | 307 | 210 | 200 | 140 | 210 | 10 | 101 | 200 | 333 | 1 | 333 | 723 | | | N 100L P 112M S 132SA N 112M S 132SB S 160MA P 132SB S 160MA N 132SB S 160MA N 132SB S 160MA S 132SB S 160MA N S N | 00.00 | | 100111111 | | | | | | | | | | | 160 | | 456 | 248 | 266 | 210 | 254 | 14 | 215 | 335 | 405 | | 405 | 475 | | | 21.18 P 112M S 132SA S 132SA N 112M 21.25 P 132SB S 160MA S N 132SB 21.43 P 160MA S N 132SB S 160MA S 160MA S N 132SB S 160MA S 160MA S N 132SB S 160MA S 160MA S N 132SB S 160MA 16 | | | | | | | | | | 1 | 1 | 1 | | 1 | | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | 1 | | 1 | | | 21.18 P 112M S 132SA S 132SA S 132SB S 132SB S 132SB S 132SB S 160MA S 132SA S 132SB S 160MA S 132SA S 132SB S 160MA | mode | el | IEC
frame | DnA | DnM | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | d x z
iso / ansi / jis | a1 | L(1) | Q | h1 | h2 | r | r1 | rb | m1 | n1 | s1 | g(1) | L3 | B2 | S2 | L1 | В3 | h3 | | N 112M 21.25 P 132SA S 132SB S 160MA S N 132SA S 160MA S N 132SB | mode | | | DnA |
DnM | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | d x z
iso / ansi / jis | a1 | | Q | | h2 | | | | m1 | | s1 | | | | S2 | | В3 | h3 | | 21.25 P 132SA S 132SB N 132SB S 160MA S 1 132SA S 1 150 15 | | N | 100L | DnA | DnM | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | d x z
iso / ansi / jis | a1 | 512 | Q | 100 | h2 | 261 | | 210 | m1 | 160 | s1 | 155 | | | S2 | | | h3 | | 21.25 P 132SA S 132SB N 132SB S 160MA S P 16 | | N
P | 100L
112M | DnA | MuQ | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | d x z
iso / ansi / jis | a1 | 512
521 | Q | 100
112 | h2 | 261
268 | 198 | 210
217 | m1 | 160
190 | s1 | 155
168 | 205 | 305 | S2 | 265 | 365 | h3 | | N 132SA P 132SB S 160MA S | | N
P
S | 100L
112M
132SA | DnA | DnM | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | d x z
iso / ansi / jis | a1 | 512
521
578 | Q | 100
112
132 | h2 | 261
268
307 | 198 | 210
217
235 | | 160
190
216 | | 155
168
181 | 205 | 305
359 | S2 | 265
333 | 365
429 | h3 | | 21.28 P 132SB S 160MA S N | 21.18 | N
P
S
N | 100L
112M
132SA
112M | DnA | Mud | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | d x z
lso / ansi / jis | a1 | 512
521
578 | Q | 100
112
132 | h2 | 261
268
307 | 198 | 210
217
235 | | 160
190
216 | | 155
168
181 | 205 | 305
359 | S2 | 265
333 | 365
429 | h3 | | S 160MA N 132SB 21.43 P 160MA S N 132SB S 160MA S N 132SB S 160MA S N 132SB S 160MA S N 132SB 31.30 P 160MA S N 132SB 31.40 P N 160MA S N 160MA S N 160MA S N 160MA S N 160MA 31.40 P N 160MA 31.40 P N 160MA 160MA N | 21.18 | N
P
S
N
P | 100L
112M
132SA
112M
132SA | DnA | DnM | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | d x z d sis / osi | a1 | 512
521
578
521 | Q | 100
112
132
112 | h2 | 261
268
307
268 | 198
218
198 | 210
217
235
217 | | 160
190
216
190 | | 155
168
181
168 | 205
263
205 | 305
359
305 | S2 | 265
333
265 | 365
429
365 | h3 | | 21.43 P 160MA S | 21.18 | N
P
S
N
P | 100L
112M
132SA
112M
132SA
132SA | DnA | Mud | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | 4 | a1 | 512
521
578
521 | Q | 100
112
132
112 | h2 | 261
268
307
268 | 198
218
198 | 210
217
235
217 | | 160
190
216
190 | | 155
168
181
168 | 205
263
205 | 305
359
305 | S2 | 265
333
265 | 365
429
365 | h3 | | 21.43 P 160MA S N 132SA S 160MA S 160MA S N 132SB 31.30 P 160MA S N | 21.18 | N
P
S
N
P
S | 100L
112M
132SA
112M
132SA
132SB
132SA
132SB | DnA | Mud | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | * * | a1 | 512
521
578
521 | Q | 100
112
132
112 | h2 | 261
268
307
268
307 | 198
218
198
218 | 210
217
235
217
235 | 140 | 160
190
216
190
216 | 10 | 155
168
181
168
181 | 205
263
205
263 | 305
359
305
359 | S2 | 265
333
265
333 | 365
429
365
429 | h3 | | N 132SA S 160MA S N | 21.18 | N P S N P S S | 100L
112M
132SA
112M
132SA
132SB
132SA
132SB | DnA | | DeA | DeM | | | * * | a1 | 512
521
578
521
578 | Q | 100
112
132
112
132
132 | h2 | 261
268
307
268
307
456 | 198
218
198
218
218 | 210
217
235
217
235
217 | 140 | 160
190
216
190
216 | 10 | 155
168
181
168
181
215 | 205
263
205
263
335 | 305
359
305
359
405 | S2 | 265
333
265
333
405 | 365
429
365
429 | h3 | | N 132SA S 160MA S N | 21.18
21.25
21.28 | N P S N P S N | 100L
112M
132SA
112M
132SA
132SB
132SA
132SB
160MA
132SB | 2,, | | | | | | x4/19x4 | | 512
521
578
521
578 | | 100
112
132
112
132
132 | | 261
268
307
268
307
456 | 198
218
198
218
218 | 210
217
235
217
235
217 | 140 | 160
190
216
190
216 | 10 | 155
168
181
168
181
215 | 205
263
205
263
335 | 305
359
305
359
405 | | 265
333
265
333
405 | 365
429
365
429 | | | 31.22 P 132SB S 160MA N 132SB 31.30 P 160MA S N 160MA 31.40 P | 21.18
21.25
21.28 | N
P
S
N
P
S
N
P | 100L
112M
132SA
112M
132SA
132SB
132SA
132SB
160MA
132SB | - 2" | -1"1/2 | | | | | -19×4/19×4 | | 512
521
578
521
578 | | 100
112
132
112
132
160
132 | | 261
268
307
268
307
456
307 | 198
218
198
218
218
248
218 | 210
217
235
217
235
235
266
235 | 210
140 | 160
190
216
190
216
216 | 10
14
10 | 155
168
181
168
181
215
181 | 205
263
205
263
335
263 | 305
359
305
359
405
359 | | 265
333
265
333
405
333 | 365
429
365
429
475
429 | | | S 160MA S 160MA S 160MA S N 132SB N 160MA S 160M | 21.18
21.25
21.28 | N
P
S
N
P
S
N
P
S
N | 100L
112M
132SA
112M
132SA
132SB
132SA
132SB
160MA
132SB | - 2" | -1"1/2 | | | / 121 / 120 | | 6-19×4/19×4 | | 512
521
578
521
578 | | 100
112
132
112
132
160
132 | | 261
268
307
268
307
456
307 | 198
218
198
218
218
248
218 | 210
217
235
217
235
235
266
235 | 210
140 | 160
190
216
190
216
216 | 10
14
10 | 155
168
181
168
181
215
181 | 205
263
205
263
335
263 | 305
359
305
359
405
359 | | 265
333
265
333
405
333 | 365
429
365
429
475
429 | | | N 1325B 31.30 P 160MA S | 21.18
21.25
21.28
21.43 | N P S N P S N P S N N P S N N P S N N P S N N P S N N P S N N N P S N N N N | 100L
112M
132SA
112M
132SA
132SB
132SB
132SB
160MA
132SB
160MA | - 2" | -1"1/2 | | | / 121 / 120 | | x4/16-19x4/19x4 | | 512
521
578
521
578
578 | | 100
112
132
112
132
160
132 | | 261
268
307
268
307
456
307 | 198
218
198
218
218
248
248 | 210
217
235
217
235
235
266
235
266 | 210
140
210 | 160
190
216
190
216
216
254
216
254 | 10
14
10
14 | 155
168
181
168
181
215
181
215 | 205
263
205
263
335
263
335 | 305
359
305
359
405
359
405 | | 265
333
265
333
405
333
405 | 365
429
365
429
475
429 | | | 31.30 P 160MA
S
N 160MA
31.40 P | 21.18
21.25
21.28
21.43 | N P S N P S N P S N P P S N P P S N N P P P S N N P P P S N N P P P S N N P P P S N N P P P S N N P P P P | 100L
112M
132SA
112M
132SA
132SB
132SB
132SB
160MA
132SB
160MA
132SB | - 2" | -1"1/2 | | | / 121 / 120 | | x4/16-19x4/19x4 | | 512
521
578
521
578
578 | | 100
112
132
112
132
160
132
160 | | 261
268
307
268
307
456
307
456 | 218
198
218
198
218
248
248
248
218 | 210
217
235
217
235
266
235
266
235 | 210
140
210
210 | 160
190
216
190
216
216
254
216
254
216 | 10
14
10
14 | 155
168
181
168
181
215
181
215
181 | 205
263
205
263
335
263
335
263 | 305
359
305
359
405
359
405 | | 265
333
265
333
405
333
405
333 | 365
429
365
429
475
429
475
429 | | | S 160 456 248 266 210 254 14 215 335 405 405 475 31.40 P | 21.18
21.25
21.28
21.43 | N P S N P S N P S N P S S N P S S N P S S N P S S N P S S N P S S N P S S N P S S
N P S S N P S N P S S N P S | 100L
112M
132SA
112M
132SA
132SB
132SB
132SB
160MA
132SB
160MA
132SB
132SA | - 2" | -1"1/2 | | | / 121 / 120 | | x4/16-19x4/19x4 | | 512
521
578
521
578
578 | | 100
112
132
112
132
160
132
160 | | 261
268
307
268
307
456
307
456 | 198
218
198
218
218
248
248
248
248 | 210
217
235
217
235
266
235
266
235
266 | 210
140
210
140
210 | 160
190
216
190
216
216
254
216
254
216
254 | 10
14
10
14
10 | 155
168
181
168
181
215
181
215
181
215 | 205
263
205
263
335
263
335
263
335 | 305
359
305
359
405
359
405
359
405 | | 265 333 265 333 405 333 405 405 | 365
429
365
429
475
429
475
429
475 | | | N 160MA
31.40 P | 21.18
21.25
21.28
21.43
31.22 | N | 100L
112M
132SA
112M
132SA
132SB
132SA
132SB
160MA
132SB
160MA
132SB
160MA
132SB | - 2" | -1"1/2 | | | / 121 / 120 | | x4/16-19x4/19x4 | | 512
521
578
521
578
578 | | 100
112
132
112
132
160
132
160 | | 261
268
307
268
307
456
307
456 | 198
218
198
218
218
248
248
248
248 | 210
217
235
217
235
266
235
266
235
266 | 210
140
210
140
210 | 160
190
216
190
216
216
254
216
254
216
254 | 10
14
10
14
10 | 155
168
181
168
181
215
181
215
181
215 | 205
263
205
263
335
263
335
263
335 | 305
359
305
359
405
359
405
359
405 | | 265 333 265 333 405 333 405 405 | 365
429
365
429
475
429
475
429
475 | | | 31.40 P | 21.18
21.25
21.28
21.43
31.22 | N | 100L
112M
132SA
112M
132SA
132SB
132SA
132SB
160MA
132SB
160MA
132SB
160MA
132SB | - 2" | -1"1/2 | | | / 121 / 120 | | x4/16-19x4/19x4 | | 512
521
578
521
578
578 | | 100
112
132
112
132
160
132
160 | | 261
268
307
268
307
456
307
456 | 198
218
198
218
218
248
248
248
248 | 210
217
235
217
235
266
235
266
235
266 | 210
140
210
140
210 | 160
190
216
190
216
216
254
216
254
216
254 | 10
14
10
14
10 | 155
168
181
168
181
215
181
215
181
215 | 205
263
205
263
335
263
335
263
335 | 305
359
305
359
405
359
405
359
405 | | 265 333 265 333 405 333 405 405 | 365
429
365
429
475
429
475
429
475 | | | | 21.18
21.25
21.28
21.43
31.22 | N | 100L
112M
132SA
112M
132SA
132SB
132SA
132SB
160MA
132SB
160MA
132SB
160MA
132SB
160MA | - 2" | -1"1/2 | | | / 121 / 120 | | x4/16-19x4/19x4 | | 512
521
578
521
578
578 | | 100
112
132
112
132
160
132
160
132 | | 261
268
307
268
307
456
307
456
307 | 218
198
218
218
218
248
218
248
218
248
218 | 210
217
235
217
235
266
235
266
235
266
235 | 210
140
210
140
210
140 | 216
254
216
254
216
254
216 | 10
14
10
14
10
14
10 | 155
168
181
168
181
215
181
215
181
215
181 | 205
263
205
263
335
263
335
263
335
263 | 305
359
305
359
405
359
405
359
405 | | 265 333 265 333 405 333 405 333 | 365
429
365
429
475
429
475
429
475 | | | | 21.18
21.25
21.28
21.43
31.22 | N | 100L
112M
132SA
112M
132SA
132SB
132SA
132SB
160MA
132SB
160MA
132SB
160MA
132SB
160MA | - 2" | -1"1/2 | | | / 121 / 120 | | x4/16-19x4/19x4 | | 512
521
578
521
578
578 | | 100
112
132
112
132
160
132
160
132 | | 261
268
307
268
307
456
307
456
307 | 218
198
218
218
218
248
218
248
218
248
218 | 210
217
235
217
235
266
235
266
235
266
235 | 210
140
210
140
210
140 | 216
254
216
254
216
254
216 | 10
14
10
14
10
14
10 | 155
168
181
168
181
215
181
215
181
215
181 | 205
263
205
263
335
263
335
263
335
263 | 305
359
305
359
405
359
405
359
405 | | 265 333 265 333 405 333 405 333 | 365
429
365
429
475
429
475
429
475 | | | mode | el | NEMA
frame | DnA | DnM | DeA | DeM | KA
iso / ansi / jis | KM
iso / ansi / jis | d x z
iso / ansi / jis | a1 | L(1) | Q | h1 | h2 | r | r1 | rb | m1 | n1 | s1 | g(1) | L3 | B2 | S2 | L1 | В3 | h3 | |-------|--------|---------------|-----|--------|-----|--------|------------------------|------------------------|---------------------------|--------|-------|------|------|------|-------|------|------|-----|-----|------|------|-------|-------|------|-------|--------|------| | | N | 184T | | | | | | | | | 20,81 | | 4,5 | | 10,94 | 8,06 | 8,62 | | 7,5 | | 7 | 8,07 | 12 | | 10,43 | 1/1 37 | | | 21.18 | Р | 184T | | | | | | | | | 20,01 | | 4,5 | | 10,94 | 8,68 | 8,75 | | 8,5 | | 8 | 0,07 | 12 | | 10,43 | 14,37 | | | | S | 213T | | | | | | | | | 23.12 | | 5,25 | | 11,68 | 0,00 | 0,73 | 5,5 | 0,0 | | | 10.35 | 14,13 | | 13,11 | 16,88 | | | | N | 184T | | | | | | | | | 20,81 | | 4,5 | | 10,94 | 8,06 | 8,62 | | 7,5 | | 7 | 8,07 | 12 | | 10,43 | 14,37 | | | 21.25 | Р | 213T | | | | | | | 4 | S | 215T | | | | | | | × | | 23.12 | | 5,25 | | 11,68 | 8,68 | 8,75 | 7 | 8,5 | | 8 | 10,35 | 14,13 | | 13,11 | 16,88 | | | | N | 213T | | | | | | | / 0,75" | | | | | | | | | 5,5 | | | | | | | | | | | 21.28 | Р | 215T | | | | | 24" |
 | 9 / 4 | | | | | | | | | 7 | | | | | | | | | | | | S | 0457 | | | | | 4,724" | 3,875" / 4,13" | × | | | | | | | | . == | _ | 0 = | | | 40.0= | | ł | | 40.00 | | | 04.40 | N
P | 215T | 2,, | 1" 1/2 | | 1" 1/2 | _ | 75" | 0,75" | 2,756" | 23.12 | 0.70 | 5,25 | 0.00 | 11,68 | 8,68 | 8,75 | 7 | 8,5 | | 8 | 10,35 | 14,13 | 1 | 13,11 | 16,88 | 0.40 | | 21.43 | S | | (4 | 7 | 2, | 1, | 4,75" | 8, | | 2,7 | | 3,78 | | 6,29 | | | | | | 0,41 | | | | 0,55 | | | 2,16 | | | N | 213T | | | | | _ | 4,33"/ | / 0,625" | | | | | | | | | 5,5 | | | | | | - | | | | | 31.22 | P | 215T | | | | | 4,92" | 4,3 | | | 23.12 | | 5,25 | | 11,68 | 8,68 | 8,75 | 7 | 8,5 | | 8 | 10,35 | 14,13 | | 13,11 | 16,88 | | | 31.22 | S | 2101 | | | | | | | × | | | | | | | | | | | | | | | 1 | | | | | | N | 215T | | | | | | | 0,75" | | 23.12 | | 5,25 | | 11,68 | 8,68 | 8,75 | 7 | 8,5 | | 8 | 10,35 | 14,13 | 1 | 13,11 | 16,88 | | | 31.30 | P | | | | | | | | 0 | | | | -,20 | | ,00 | 2,00 | 2,70 | | 2,0 | | ا ا | 12,00 | ,.0 | 1 | , | , | | | 1 | S | 1 | 1 | 1 | 1 | | | | 1 | | | | dimension in inch | IEC | | Model | | 20.15 | | | 20.20 | | | 20.27 | | | 20.36 | | | 30.15 | | | 30.25 | | | 36.30 | | |-----------|---------------|---------|----|-------|----|----|-------|----|----|-------|---------|---------|---------|---------|----------|-------|----|----------|-------|----|----|-------|----------| | 50 HZ | | Version | N | Р | S | N | Р | S | N | Р | S | N | Р | S | N | Р | S | N | Р | S | N | Р | S | | 2900 rpm | тріп | | WR WR
GF | WR | WR | WR | WR | WR
GF | | Max. hea | d | m.c.l | | 20 | | | 23 | | | 31 | | | 41 | | | 23 | | | 31 | | | 37 | | | Max. cap | acity | m³/h | | 35 | | | 40 | | | 27 | | | 40 | | | 44 | | | 52 | | | 54 | |
| Loads (po | orts-section) | Kg | | | | | | | | Ма | x. sing | e strer | igth va | lue F(x | (,y,z) = | 2,5 | Motor | Voltage | V | | | | | | | | | | 400 : | ± 5% 5 | 0 Hz | | | | | | | | | | | | Phase | n° | | | | | | | | | | 3 - | 1 (< 3 | kW) | | | | | | | | | | | | Protection | IP | | | | | | | | | | | 55 | | | | | | | | | | | | IEC | | Model | 21.18 | | | 21.25 | | | 21.28 | | | 21.43 | | | 31.22 | | | 31.30 | | | 31.40 | | | |-----------------------|------------|---------|---|----------|----|-------|-----|-----|-------|-----|----------|-------|----------|----------|-------|----------|----------|-------|-----|----------|----------|----------|-----| | 60 HZ | | \/: | N | Р | S | N | Р | S | N | Р | S | N | Р | S | N | Р | S | N | Р | S | N | Р | S | | 3500 rpm | | Version | S R | WR
GF | WR | S N | S R | N N | S R | S N | WR
GF | WR | WR
GF | WR
GF | WR | WR
GF | WR
GF | S N | S R | WR
GF | WR
GF | WR
GF | S R | | Max. head | | m.c.l | 22 | | | 29 | | | 36 | | 46 | | 31 | | 38 | | 52 | | | | | | | | Max. capacity | | m³/h | 36 | | | 40 | | | 37 | | 40 | | 48 | | 52 | | 55 | | | | | | | | Loads (ports-section) | | Kg | Max. single strength value $F(x,y,z) = 2,5$ | Motor | Voltage | V | 460 ± 5% 60 Hz | Phase | n° | 3 - 1 (< 3 kW) | Protection | IP | 55 | ### **MANUFACTURER DATA** Production head and legal office: Via Labirinto, 159 I - 25125 BRESCIA Tel: 030 3507011 Fax: 030 3507077 Administration: Tel: 030 3507019 Export manager: Tel: 030 3507022 Customer service: Tel: 030 3507025 Web: www.argal.it E-mail: sales@argal.it | CONTRACTUAL DATA | | | | | | | | | |-------------------|-------------|--|--|--|--|--|--|--| | medium | conc. | temperature | | | | | | | | | % | °C | | | | | | | | | capacity | head | | | | | | | | | m ³ /h | m | | | | | | | | | w.o. | | | | | | | | | | | |------|---|---|--|--------|--|--|--|--|--|--| | | _ | _ | | _
] | | | | | | | | | | | | | | | | | | | REV. 12 - 12/11