Instruction Manual - TDS-JS2 ## **CONDUCTIVITY BLEED OR DOSING CONTROLLER** ## Supplied by: ## **Convergent Water Controls Pty Ltd** 2/4 Huntley Street Alexandria NSW 2015 Tel: (02) 9698 3131 www.cwc.com.au Fax: (02) 9698 3210 info@cwc.com.au **Note:** On-going product development at Convergent Water Controls may lead to changes in the specifications of this product. **Warranty:** This product is guaranteed for a period of 12 months from installation date. The warranty applies to manufacturing or component defects which may cause the unit to malfunction under specified conditions. The guarantee does not cover damage due to abuse, tampering or improper installation. **Disclaimer:** Convergent Water Controls will not be held liable for any consequential damage or loss arising resulting from product malfunction. ## **TABLE OF CONTENTS** | 1. I | INTRODUCTION | 1 | |------|--|----| | 2. I | INSTALLATION | 1 | | 2.1 | 1 Mounting the Controller | 1 | | | 2 Electrical Wiring Information | | | | 3 Probe Installation & Maintenance | | | 2.4 | 4 Adding Optional 4-20mA Card (ordering code AF09) | 3 | | 3. (| COMMISSIONING | 4 | | 3.1 | 1 Start-Up | 4 | | | 2 Set UNITS | | | 3.3 | 3 Set OPERATION | 6 | | 3.4 | 4 Calibration | 7 | | 3.5 | 5 Priming Pump / Testing Solenoid | 7 | | 4. F | PROGRAMMING STEPS IN DETAIL (BLEED CONTROLLER) | 8 | | 4.1 | 1 Set Conductivity Setpoint | 8 | | 4.2 | 2 Set HIGH Alarm | 9 | | 4.3 | 3 Set TIMER Alarm | 10 | | 4.4 | 4 Set Bleed Cycle | 11 | | 5. F | PROGRAMMING STEPS IN DETAIL (DOSING CONTROLLER) | 12 | | 5.1 | 1 Set Conductivity Setpoint | 12 | | | 2 Set LOW Alarm | | | 5.3 | 3 Set TIMER Alarm | 14 | | 5.4 | 4 Set Dose Cycle | 15 | | 6. F | FACTORY SETTINGS / PROGRAMMABLE OPTIONS | 16 | | 7 9 | SPECIFICATIONS | 16 | ## 1. INTRODUCTION The TDS-JS2 controller, normally used for TDS bleed control, is easy to set up and operate, and has built in features to warn the user should any part of the process fail. The instrument samples the cooling tower water continuously and when the TDS exceeds the user programmable SETPOINT, then controlled bleed-off takes place. Once the TDS is corrected, bleed-off stops. The speed of TDS correction is programmable, preventing excessive bleed-off. ## 2. INSTALLATION ## 2.1 Mounting the Controller - 1. Mount the controller on a flat vertical surface away from extreme heat, humidity or areas where temperature variation is extreme. - 2. Mount the TDS-JS2 such that the instrument is at eye-level to allow good visibility of the LCD display. ## 2.2 Electrical Wiring Information The diagram below shows the connections to the TDS-JS2 controller circuitry. 1 L3: Conductivity Probe PR+ (brown) L4: Conductivity Probe PR- (yellow) L5: Conductivity Probe CM+ (blue) L8+ L9: Alarm Relay N/O volt-free L8+ L10: Alarm Relay N/C volt-free R1: Mains Active 240VAC (power supply) R2: Mains Neutral R3: Auxiliary Active 240VAC (eg. for AF09 4-20mA card) R4: Auxiliary Neutral R5: Output (solenoid or pump) Active 240VAC R6: Output (solenoid or pump) Neutral R13 – R18: Earth **Fuse:** 2A/250VAC (M205, 20mm x 5mm diameter) #### **Notes on Alarm Relay Contacts:** 1. Alarm relay is energised (ie. L8 connected to L9) during normal operation of the unit. 2. Alarm relay de-energises (ie. L8 connected to L10) when an alarm is raised or when the unit loses power. When the controller is used as a cooling tower bleed controller, the ACTIVE and NEUTRAL solenoid valve wires are connected to terminals 5 and 6. When used as a dosing controller, use the same terminals to operate the dosing pump. ## 2.3 Probe Installation & Maintenance The probe supplied should be screwed into a Tee piece such that the electrode tips are submerged in the water flowing through the Tee. The probe's electrodes should periodically be cleaned to maintain accurate TDS measurements. The frequency of cleaning required will vary from one application to another. In a new installation, it is recommended that the probe be cleaned after 2 weeks of service. To clean the probe, first unplug the probe lead and unscrew the probe from the manifold. The probe can normally be cleaned using a cloth or paper towel. Occasionally the probe's carbon electrodes may be coated with certain substances which requires more vigorous cleaning (this coating may not always be visible). To clean a coated electrode, use a fine grit abrasive, such as emery paper. After cleaning, apply more Teflon[®] tape to the probe thread and screw back into the manifold. The controller should always be calibrated after probe cleaning. ## 2.4 Adding Optional 4-20mA Card (ordering code AF09) The TDS-JS2 can be fitted with an optically isolated 4-20mA interface card to provide an output to a data logger, chart recorder or building management system. The interface card is an ordering option and can be retro-fitted to the TDS-JS2, or can be supplied factory fitted. The AF09 optional kit consists of the following: - 1. Optically isolated 4 20mA card - 2. Interconnecting communications cable. - 3. 2 x 15mm metal spacers. You may skip this section if the card is factory fitted. - 1. Make sure that the power is switched off and the controller is unplugged from mains power. - 2. Remove cover of enclosure. - 3. Locate the two screws as indicated in the diagram above and remove. Do not discard these screws. - 4. Plug the interconnecting cable into the USB socket. - 5. Screw the 2 metal spacers into space where the screws were removed. - 6. Locate the two mounting holes on the interface card. - 7. Use the screws removed in step 3 and fasten the card to the 2 metal spacers (installed in step 5). - 8. Connect the RED wire of the interface card to terminal 3. - 9. Connect the BLACK wire of the interface card to terminal 4. - 10. Connect the +ve and –ve terminal of the 4-20mA card to your chart recorder, data logger or building management system. It is important to observe the correct polarity of these connections. - 11. Replace cover of enclosure. - 12. Plug into mains and switch on. **NOTE**: The 4-20mA signal transmitted spans the conductivity range of 0 to twice the TDS setpoint. For instance, if the setpoint=1000TDS, 4-20mA spans the conductivity range: 0-2000TDS. ## 3. COMMISSIONING ## 3.1 Start-Up After power-up, the TDS-JS2 controller is ready to perform conductivity (TDS or μ S) indication and control. All the relevant information is displayed on the LCD display as explained below. Which alternates with ... Display during normal operation: Measured TDS & TDS Setpoint alternating with measured TDS & solution temperature, as shown above. Display **during programming**: Programming information (eg. "SET: Setpoint"). Display **if alarm is reported**: Displays alarm activated, eg. "Alarm !! [HIGH]" ## 3.2 Set UNITS Conductivity can be displayed in either: TDS (ie. Total Dissolved Solids), or μ**S** (ie. microsiemens) The displayed units, ie. either TDS or μ S should be selected before performing calibration and before programming conductivity setpoint. To leave the display in TDS, ie. factory default setting, proceed to section 3.3. #### **Example:** Changing the factory default of TDS to μ S #### Item flashing on display: - ♠ Press to Scroll - Press to Select/Enter ## 3.3 Set OPERATION The TDS-JS2 can be set to operate either as a bleed controller or as a dosing controller. #### Example: Changing the factory default of Bleed Controller to Dosing Controller ## Item flashing on display: - ♠ Press to Scroll - Press to Select/Enter ## 3.4 Calibration Take a sample of water from the cooling tower basin and measure the TDS with a hand-held conductivity meter. Should the TDS readout on the display differ from the sample taken, calibrate the controller as follows: The following can be performed, BUT only by a qualified technician. IMPORTANT: AS THE UNIT NEEDS TO BE POWERED, BE VERY CAREFUL NOT TO TOUCH ANY OF THE SCREW TERMINALS OR THE CIRCUIT BOARDS, AS THEY MAY BE LIVE, AND CAN RESULT IN ELECTRIC SHOCK, OR EVEN DEATH. - 1. Remove the lid of the controller - 2. Locate the trim potentiometer on the right-hand side of the processor board. - 3. Slowly turn the potentiometer with an insulated miniature screwdriver until the desired reading is obtained. - 4. Replace the lid of the controller, ensuring that the seal is in place and no wires are trapped between the lid and the base. ## 3.5 Priming Pump / Testing Solenoid Press the SCROLL pushbutton for at least 2 seconds. The display will read: Testing Output ... The solenoid or pump will activate for approximately 2 minutes before reverting to normal mode. However, to stop testing before then, press SCROLL again. ## 4. PROGRAMMING STEPS IN DETAIL (Bleed controller) IMPORTANT: It is assumed that the TDS-JS2 has been setup as a Bleed Controller. Section 5 outlines the programming steps where the TDS-JS2 has been setup as a Dosing Controller. ## 4.1 Set Conductivity Setpoint The programmed operation of the TDS-JS2 is conductivity bleed control, ie. the solenoid opens (ie. bleeds) when the TDS rises above the setpoint. When this occurs, the system water is flushed to drain and fresh make-up water dilutes the system, thus lowering the conductivity of the cooling tower water. The setpoint is entered as an actual number (eg. 1000 TDS). The controller can be programmed to bleed continuously (ie. factory default), or on a duty cycle (as outlined in section 4.4), when the system TDS > setpoint. #### **Example:** Increasing factory default setpoint of 1000 TDS to a new setting of 1150 TDS ## Item flashing on display: - Press to Scroll - Press to Select/Enter ## 4.2 Set HIGH Alarm To leave the alarm in its disabled state, ie. factory default setting of 0000, proceed to section 4.3. Enabling the alarm requires you to program a HIGH TDS value that is higher than the programmed setpoint. If the TDS rises above the HIGH alarm level, the high alarm will be reported on the display and the alarm LED will illuminate. Furthermore, if enabled, the audible alarm buzzer will sound. The HIGH alarm condition can be reset by pressing & holding the ENTER button (until the Alarm LED switches off) or will automatically cancel once the conductivity drops to a level below the HIGH alarm level. When an alarm is reported, the display will alternate between the alarm and the normal display. For instance, if HIGH Alarm = 1400TDS, the display will alternate between "Alarm !! [HIGH]" and "1450 TDS [1000]", assuming 1450TDS is the measured conductivity. ## Item flashing on display: - Press to Scroll - Press to Select/Enter Note: Shading represents flashing #### **Example:** Change factory default of 0000 to 1400 (ie. alarm reported when conductivity > 1400) ### 4.3 Set TIMER Alarm #### Item flashing on display: - Press to Scroll - Press to Select/Enter Note: Shading represents flashing The TIMER alarm activates when the maximum permissible continuous bleed time is exceeded. This alarm is designed to protect the system from excessive bleeding. Should there be a problem with make-up water not entering the tower, the solenoid will continue to bleed indefinitely as no dilution takes place. Alternatively, a faulty TDS probe may read a high TDS when in fact the TDS is low, and the solenoid will continue to bleed indefinitely. The TIMER alarm prevents these excessive conditions. To leave the alarm in its disabled state, ie. factory default setting of 0000s, proceed to section 4.4 If the TDS reaches the setpoint within the programmed time, the timer resets. However, if the timer times out before the TDS reaches the setpoint, the bleed solenoid switches off and is disabled until the unit is manually reset by holding down the ENTER button. Until then, the alarm will be reported on the display and the alarm LED will illuminate. Furthermore, if enabled, the audible alarm buzzer will sound. When an alarm is reported, the display will alternate between the alarm and the normal display. For instance, the display will alternate between "Alarm !! [Timer]" & "1137 TDS[1000]", assuming the TDS reading from the probe is 1137TDS. #### **Example:** Factory default: 0000s (ie. alarm disabled) Change to: 1 hour, ie. 3600s ## 4.4 Set Bleed Cycle #### Item flashing on display: Press to Scroll Press to Select/Enter Note: Shading represents flashing To leave the Bleed Cycle in its disabled state, exit from the main menu. This is the factory default setting of ON/OFF=00s/00s which means that the solenoid will bleed continuously when measured TDS > Setpoint. However, this may lead to excessive tower drainage. To overcome this problem, as well as allowing the make-up to efficiently mix with the cooling tower water, the controller has two timers that regulate the duty of the bleed solenoid. These timers are the ON and OFF times of the BLEED CYCLE. Each ON time is followed by an OFF time and repeated until the measured TDS < setpoint. For instance, the timers can be programmed to operate the solenoid for say 10 seconds, and then allow 40 seconds for mixing time (ie. dilution), before the bleed is activated again. This action prevents excessive bleeding. In this example, the Bleed ON/OFF CYCLE would be set to 10s/40s. The solenoid would, hence, bleed for 10s every 50s (ie. 10s+40s) which equates to a 20% duty cycle. Should the measured TDS rise more than 25% above the programmed SETPOINT, the controller doubles the ON time and halves the OFF time to bring the TDS within 25% of the setpoint very quickly. As soon as the measured TDS comes back to within 25% of the SETPOINT, normal bleed duty cycle (ie. programmed ON/OFF times) will resume. #### **Example:** Factory default: 00s/00s (ie. bleed solenoid activated continuously when TDS > TDS setpoint). Change to: 10s/40s (ie. 20% duty cycle), calculated as 10/(10+40). ## 5. PROGRAMMING STEPS IN DETAIL (Dosing controller) IMPORTANT: It is assumed that the TDS-JS2 has been setup as a Dosing Controller. Section 4 outlines the programming steps where the TDS-JS2 has been setup as a Bleed Controller. ## 5.1 Set Conductivity Setpoint The programmed operation of the TDS-JS2 is conductivity dosing control, ie. the pump doses when the TDS drops below the setpoint. When this occurs, chemical is dosed into the system, thus increasing the conductivity of the system. The setpoint is entered as an actual number (eg. 1000 TDS). The controller can be programmed to dose continuously (ie. factory default), or on a duty cycle (as outlined in section 5.4), when the measured TDS < setpoint. #### Example: Increasing factory default setpoint of 1000 TDS to a new setting of 1150 TDS ### Item flashing on display: - Press to Scroll - Press to Select/Enter To leave the alarm in its disabled state, ie. factory default setting of 0000, proceed to section 5.3. Enabling the alarm requires you to program a LOW TDS value that is lower than the programmed setpoint. If the TDS drops below the LOW alarm level, the low alarm will be reported on the display and the alarm LED will illuminate. Furthermore, if enabled, the audible alarm buzzer will sound. The LOW alarm condition can be reset by pressing & holding the ENTER button (until the Alarm LED switches off) or will automatically cancel once the conductivity rises to a level above the LOW alarm level. When an alarm is reported, the display will alternate between the alarm and the normal display. For instance, if LOW Alarm = 600TDS, the display will alternate between "Alarm !! [LOW]" and "550 TDS [1000]", assuming 550TDS is the measured conductivity. ### Item flashing on display: - Press to Scroll - Press to Select/Enter Note: Shading represents flashing #### **Example:** Change factory default of 0000 to 600 (ie. alarm reported when conductivity < 600) ### 5.3 Set TIMER Alarm Item flashing on display: Press to Scroll Press to Select/Enter Note: Shading represents flashing The TIMER alarm activates when the maximum permissible continuous dosing time is exceeded. This alarm is designed to protect the system from excessive overdosing. For instance, a faulty TDS probe may read a low TDS when in fact the TDS is high, and the pump will continue to dose indefinitely. The TIMER alarm prevents these excessive conditions. To leave the alarm in its disabled state, ie. factory default setting of 0000s, proceed to section 5.4 If the TDS reaches the setpoint within the programmed time, the timer resets. However, if the timer times out before the TDS reaches the setpoint, the pump switches off and is disabled until the unit is manually reset by holding down the ENTER button. Until then, the alarm will be reported on the display and the alarm LED will illuminate. Furthermore, if enabled, the audible alarm buzzer will sound. When an alarm is reported, the display will alternate between the alarm and the normal display. For instance, the display will alternate between "Alarm !! [Timer]" & "735 TDS[1000]", assuming the TDS reading from the probe is 735TDS. **Example:** Factory default: 0000s (ie. alarm disabled) Change to: 1 hour, ie. 3600s ## 5.4 Set Dose Cycle Item flashing on display: ♠ Press to Scroll Press to Select/Enter Note: Shading represents flashing To leave the Dose Cycle in its disabled state, exit from the main menu. This is the factory default setting of ON/OFF=00s/00s which means that the dosing pump will dose continuously when measured TDS < Setpoint. However, when a chemical product is dosed for TDS correction, some time is required for agents to react. Depending upon the location of the dosing point and the volume of water in the system, it may take some time before the chemicals reach the conductivity probe. If the response is slow, overdosing can occur due to the delay between dosing and measurement. To overcome this problem, the controller has two timers that regulate the duty of the dosing pump. These timers are the ON and OFF times of the DOSE CYCLE. Each ON time is followed by an OFF time and repeated until the setpoint is reached. For instance, the timers can be programmed to operate the pump for say 10 seconds, and then allow 40 seconds for reaction time, before the pump is activated again. This action prevents overdosing. In this example, the DOSE ON/OFF CYCLE would be set to 10s/40s. The pump would, hence, dose for 10s every 50s (ie. 10s+40s) which equates to a 20% duty cycle. Should the measured TDS drop to less than 25% below the programmed SETPOINT the controller doubles the ON time and halves the OFF time to bring the TDS within 25% of the setpoint very quickly. As soon as the measured TDS increases to within 25% of the SETPOINT, normal pump duty cycle (ie. programmed ON/OFF times) will resume. Example: Factory default: 00s/00s (ie. pump doses contin- uously when TDS < TDS setpoint). Change to: 10s/40s (ie. 20% duty cycle) # 6. FACTORY SETTINGS / PROGRAMMABLE OPTIONS | Item | Factory Setting | Option | Note | |--------------------------|-----------------|---------------------------------|---| | Setpoint | 1000 TDS | 1 – 10,000 μS | Determine the desired system TDS/μS | | High Alarm/
Low Alarm | 0000 TDS | 0 – 10,000 μS | 0000 = alarm disabled Otherwise HIGH alarm setting must be greater than Setpoint / LOW alarm setting must be less than Setpoint | | Timer Alarm | 0000 sec | 0 – 9999 sec | 0000 = alarm disabled | | Units | TDS | TDS or μS | Must be set before calibrating | | Operation | Bleed | Bleed / Dosing | & programming | | Bleed/Dose Cycle | 00s/00s | ON = 0-99 sec
OFF = 0-99 sec | 00s/00s = continuous bleed / continuous dosing | ## 7. SPECIFICATIONS | Power Supply: | 220 – 240 VAC | | |------------------------------|---|--| | Inputs: | Conductivity Probe supplied (DCON-P10AT) | | | | Flow switch (Option AF04) | | | Standard Outputs: | 240VAC applied to Pump Output – 5 Amp rated. Potential free contact available on request. | | | Optional Outputs: | AF01: Potential–free relay N/O contact for alarms | | | | AF09: Isolated 4-20mA card to remotely | | | | monitor conductivity level | | | Measured TDS Resolution: | 1 TDS / μS | | | Hysteresis: | 6% | | | LED Indication: | Power ON, Solenoid/Pump Operate, Alarm | | | Controller Enclosure rating: | IP55 (ie. completely weatherproof) | | | Operating Temperature: | 0 - 50°C | | | Memory backup: | EEPROM. Data retention of 10 years min. | |